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THE KINETICS OF POROUS INSERTION ELECTRODES 

S. ATLUNG* and K. WEST 

The Technical University of Denmark, DK 2800, Lyngby (Denmark) 

Summary 

The kinetics of porous electrodes with an insertion compound as active 
material is a compound function of the kinetics of the insertion material and 
transport of inserted ions in the electrolyte-filled pores. The insertion com- 
pound and the electrolyte transport are first treated separately and then 
combined in the treatment of the porous electrode. The overvoltage and the 
materials utilization for the insertion compound are treated in terms of 
simple, solid state diffusion and a potential/composition dependence based 
on an idealized model with first order interactions. 

Transport in the electrolyte is treated using transport equations which 
take into consideration cross diffusion terms using the molar conductance. 
From this treatment an estimate of the conditions necessary to avoid 
depletion of electrolyte salt in the pores is derived. 

The concepts of load factors for the insertion compound and for the 
electrolyte part of the electrode are introduced to express the severity of the 
discharge in relation to the transport rates in the systems. 

The couplings between the insertion reaction and the transport in the 
pores are defined. Based on these the potentials and concentrations in the 
porous electrode during discharge can be found. 

As an example, results from such calculations on a typical porous TiSz 
electrode with liquid electrolyte are presented. The influence of electrode 
thickness and porosity is demonstrated and a contour representation of the 
influence of the load factors on the materials utilization is shown. 

It is demonstrated that a low mobility for the anion in the electrolyte 
is an advantage. In consequence, a theory for composite electrodes using 
solid electrolytes is developed. It is shown that this electrode behaves as 
a non-porous insertion electrode with a much enhanced transport rate. 

Introduction 

Most efforts to construct a rechargeable Li or Na-battery have been 
directed towards the use of insertion compounds as active material for the 
positive electrode. 
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When it comes to the design of practical batteries it is immediately 
obvious that in order to realize the high theoretical energy density of the 
alkali metal/insertion compound systems, the batteries must be constructed 
with porous electrodes. 

The theory of porous electrodes has been intensively studied, but the 
work in this field has mostly been directed towards the problems associated 
with fuel cells and the lead-acid battery. The results from these studies are 
not easily adapted to the porous insertion electrode. The reason is that the 
behaviour of this electrode is controlled primarily by the following factors: 

(i) The equilibrium electrode potential is usually very dependent on the 
degree of discharge. 

(ii) The working potential is influenced by transport of the inserted 
ions in the solid electrode phase. 

(iii) The mobility of ions in electrolytes compatible with the alkali 
metal negative electrode is much lower than the mobilities in aqueous 
electrolytes. Consequently, the influence of electrolyte transport is more 
pronounced than for aqueous systems. 

Principles of porous electrodes 

A porous electrode can be considered as consisting of two contiguous 
interwoven networks. The insertion compound network consists of particles 
in contact with each other. This network must be electronically conducting. 
The other network consists of the electrolyte-filled pores. They are in 
contact with the separator electrolyte positioned between the two electrodes. 
The ions participating in the insertion reaction and originating from the 
negative electrode migrate through the separator into the pores and through 
these to the site in the interior of the electrode where they react with the 
insertion compound. The characteristic feature of the porous electrode is, 
therefore, that the electrode reaction is distributed in space. 

POROUS CATHODES 

Fig. 1. Model of porous insertion electrode. Cylindrical geometry. 
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Figure 1 shows a very simplified model consisting of long cylinders of 
insertion compound in contact with the current collector. The pores between 
the cylinders are filled with electrolyte. 

The discharge current enters the electrode pores as a flux of ions. 
Gradually, through the electrode reaction, this current decreases and 
becomes zero at the bottom of the pore. The local electrode reaction current 
it can be found from the decrease in the ionic current, ii. Neglecting geometric 
factors the basic relation for the porous electrode is: 

dil 
it=-- 

dz (1) 

where z is the space coordinate in the porous system. The behaviour of the 
porous electrode is therefore equally influenced by the current and transport 
in the electrolyte network and by the discharge kinetics of the insertion 
compound. 

Discharge of the insertion compound 

The discharge of insertion electrodes can be formulated as: 

6A’+ Se- tHA,+HA,+s 

where A+ is the inserted ion and HA, is the partially inserted “host” corn- 
pound. 6 expresses a differential increase in the degree of insertion. In-order 
to utilize the entire amount of insertion material the reacting ion must be 
transported away from the surface and distributed in the interior of the 
insertion compound particle. This transport takes place as solid state diffu- 
sion. The driving force is the gradient in chemical potential of the inserted 
ion caused by the abundance of this ion near to the surface. 

Only a limited number of sites are available for the inserted ion. 
A convenient measure for the concentration is the relative local occupancy X, 
equivalent to the ratio of the local concentration c, to the saturation concen- 
tration I$. Considering that only 1 - X sites are available, the unidirectional 
flux density, j, can be found as [l] 

j=-_bX(l-XX)% 

’ dy 
where E.C, is the chemical 
nate, and b is a mobility. 

The ionic transport 

potential of the inserted ion, y is the space coordi- 

is necessarily accompanied by rearrangement of the 
electron distribution. However, in most insertion compounds the electronic 
mobility is much larger than the ionic mobility, and therefore dE.c, will con- 
trol the transport. There are no general rules for the relation between c(~ and 
X, but for analyzing the characteristic behaviour of insertion electrodes, we 
may use an ideal model substance. If we consider all available sites to be 
equivalent, statistical mechanics gives [ 21 
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(3) 

which combined with eqn. (2) gives 

j=---R*bdX 

dy 

(4) 

which is equivalent to Fick’s first law with a diffusion coefficient D, = RTb/&. 
A much better approximation is obtained if we allow for first order inter- 
actions between the inserted ions. If these are weak we get [l] 

x - +fx 
1-x 

where the interaction energy is contained in the factor f, which is positive 
for repulsive interactions. Combining eqns. (2) and (5) gives 

j = -RTb(l+ fX(1 -X)) $ (6) 

which describes diffusion with a concentration dependent diffusion coeffi- 
cient. 

Unfortunately the use of a concentration dependent diffusion coefficient 
prevents analytical solutions of the transport problem, and impedes a simple 
evaluation of the influence of the transport on the discharge behaviour. For 
this reason the following discussion will be conducted using the simple form, 
eqn. (4). The solid state diffusion coefficient, D,, should be considered as 
an average value. In numerical work, however, the use of eqn. (6) presents 
no problems and is recommended. In any case, transport by diffusion implies 
that the value of X at the surface, X*, is higher than the average value, which 
is equal to the degree of discharge. This is illustrated in Fig. 2, which depicts 
the development of the concentration profile for two different particle 
shapes during discharge. When X* becomes equal to unity, further insertion 
is impossible and the discharge ends. At this point the average value of X and, 
consequently, the utilization of the insertion material, will be less than one. 
The amount of material not utilized can be found from the shape of the X 
profile through the particle. 

To find an analytical expression for this profile we must solve the 
general mass conservation relation &/at = -aj/ay. The concentration 
gradient at the surface is 

dX 

I 

-i, 

dy 
=- 

Fc,oD, 
(7) 

surface 

where i, is the discharge current density. The mass conservation relation 
gives, with j inserted from eqn. (4) 

ax a*x -= 
at DS---- 

W (8) 
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Distance from center_ 

Fig. 2. Concentration profiles in particles for different times, indicated as t/rD. -, 
plane geometry; - - -, spherical geometry; load factor, L, = 1. 

The boundary condition on the insertion compound/electrolyte interface is 
given by the discharge mode. If we assume a constant current discharge, eqn. 
(7) with constant iy is the proper condition to use. 

The other boundary condition is chosen at the center or symmetry 
plane of the particle where dX/dy = 0. In this way we introduce the particle 
size, defined as the distance, r, from the surface to the symmetry point or 
plane. The magnitude of the particle size has two aspects. First, because, for 
batteries, the discharge current will be specified, not as the interfacial 
current density, but as a current, I, e.g., per unit volume electrode. The inter- 
facial area per unit volume is determined by P and the geometry of the 
particle. The ratio between area and volume is s/r, where s is 1, 2, or 3 for 
plane, cylindrical, and spherical particles, respectively. Thus for given I the 
current density decreases for decreasing r. 

The other effect of the particle size is that the time for transport 
through the entire particle depends on r. The time constant for diffusion is: 

r2 
T8 = - 

DS 
(9) 
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rs must be small compared with the required discharge time in order to 
obtain a uniform utilization. 

With the boundary conditions discussed, the solution of eqn. (8) is 
straightforward and gives an expression for X as a function of the time and 
position [ 31. 

As illustrated in Fig. 2, for small times the insertion reaction has not 
penetrated to the center of the particle. The diffusion is “semiinfinite” and 
X varies with time according to a t “2-law (cf. the “Sand” equation). The 
utilization of the material is low, less than 50%, and for this reason this part 
of the discharge is, as a rule, uninteresting from a battery point of view. 
For larger times the semiinfinite diffusion transforms into diffusion in the 
domain bounded by the particle size. The degree of insertion at the center 
of the particle increases and the profile becomes parabolic. This profile is 
then displaced linearly with time against higher values of X. 

The general solution for the dependence of the surface value X* on 
l.ime can be found as [2, 31: 

(10) 

The term “Z” signifies an infinite sum of exponentials of the form: [exp(-a& 
T,)]/c$, where (pi, for example, for plane particles is in, i = 1 . . . 00. For t > 7,/3 
the “Z” 
electrode 
Equation 

X*= _!L 
90 

term can be neglected, The -charge per unit volume which the 
can deliver if all particles are uniformly saturated, QO, is Fc,9 

(10) without “2” can then be written as: 

+Ir2 1 

QoD, s(s + 2) 
(11) 

As It is the charge delivered at time t, the first term is the overall degree of 
discharge, U. &,/I is termed the stoichiometric discharge time, rn, i.e., the 
discharge time with the given current I if the electrode could be utilized 
100%. rn resembles the measure used in the battery industry to characterize 
the discharge rate, e.g., a 3 h discharge. 

Ir2/Q,D, is the ratio between the two characteristic times: r&o. This 
ratio is termed the “load factor”, L,. Because rs is a measure for diffusion 
resistance and ro for the reaction rate required, L, is a measure of the severity 
of the discharge. With these battery oriented parameters eqn. (11) can be 
written: 

L x*=u+ - 
s(s + 2) 

The maximum utilization, U,,, is obtained when X* = 1: 

(12) 

u JL 
m,=l- - 

s(s + 2) 
(13) 
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The values of the load factor where eqns. (12) and (13) are valid is limited 
by the assumption t > 7,/3 at the saturation point. This gives an upper limit 
for L, which is 1.5, 2.2, and 2.5 for plane, cylindrical, and spherical particles, 
respectively. 

In the considerations above it was assumed that surface saturation is the 
dominating cause of the end of discharge. This requires that enough A’ ions 
are available in the electrolyte at the interface. Also, to apply eqns. (10) - (13) 
on a porous electrode, the current distribution must be uniform. These two 
conditions are only fulfilled in a favourably limiting case. 

The working potential 

The preceding section was only concerned with the coulombic capacity. 
The working potential as a function of the degree of discharge is, however, 
necessary to explain the operation of porous electrodes. Also, the working 
potential together with the coulombic capacity determines the energy out- 
put. 

From thermodynamic considerations the following expression for the 
equilibrium potential can be derived [ 41: 

(n - 6) = ; (P+ - (EC* + /-a) (14) 

?r is the Fermi potential in the insertion compound, r$ the Galvani potential 
in the electrolyte, /J+ the chemical potential of A? in the electrolyte and /J: 
the chemical potential of electrons in the insertion compound. The electronic 
term may play a role for some compounds, but for our model compound we 
shall assume that this term is constant because the intrinsic electron concen- 
tration is high. For /.L* we shall use eqn. (5) and for the electrolyte term the 
ideal solution value: RT In cl, where cl is the concentration of A’ in the 
electrolyte. For the working potential, E, we must use the interfacial concen- 
trations indicated by superscript * and add a transfer overvoltage term, n, 
depending on the interfacial current density. 

Then the working potential of the model substance is: 

E=E”+ y 
X* 

- -fx* 
1-x* 

+q (15) 

where E, is a standard potential. 
To estimate the significance of the terms in eqn. (15) TiSz can be used 

as an example [5]. In Fig. 3, measured values of E for TiSz are depicted 
together with the curve calculated from eqn. (15) with f = 20.5. Note that 
in the range 0.05 < X < 0.95 the potential decrease is 550 mV, but only 
150 mV originates from the ln X/(1 - X) term. 

The influence of the charge transfer term, q, can be estimated from 
measurements by a.c. small signal impedance spectroscopy on TiSs single 
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Fig. 3. Dependence of e.m.f. on X for TiS2. - - - -, Measured points; __, calculated from 
eqn. (15), with q included in E” and f= 20.5. 

crystals [6]. The charge transfer resistance was estimated to be 20 - 150 ohm 
cm2 at X = 0.5. As the current density at the surface of a 10 pm spherical 
TiS, particle discharged at the 3 h rate is cu. 0.05 mA cm2, the transfer over- 
voltage is estimated to be 1 - 10 mV, which is quite insignificant compared with 
the overall voltage change during discharge. This is considered typical for 
insertion electrodes, as the charge transfer does not include formation of 
new phases or electron transfer. In the following the charge transfer term in 
eqn. (15) is neglected. 

To calculate the working potential as a function of discharge time, X* is 
found from the solution of eqn. (8), and this value is used in eqn. (15). 
During most of the discharge the X* terms dominate, but in porous electrodes 
CT may approach zero in the interior of the electrode and cause a high over- 
voltage. 

Transport in the electrolyte 

The electrolytes used may be liquid, polymeric, or solid. Solid 
electrolytes should be fast ion conductors. Electrode systems using these 
electrolytes will be treated separately in a later section. 

The following concerns liquid and polymeric electrolytes. The 
electrolyte salt used in these is supposed to be a 1:l salt of A+. The ion fluxes 
are determined by the gradients in the electrolyte concentration and in the 
Galvani potential. These gradients depend on the magnitude of the discharge 
current. As a rule they vary with the position in the pore, and with time. 

To model the ionic transport in the first approximation the Nernst- 
Planck equation can be used. Using the ionic current to express the electrical 
transport we get: 

(164 
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Wb) 

where j are the flux densities and IZ the transport numbers, + and - signifies 
cation and anion, respectively. The ionic diffusion coefficients D+ and D- are 
combined in the salt diffusion coefficient D1 

D1 = 
20,D.m 

D++D- 

D+ D- 
‘+= D++D_; 

n- = 
D++D- 

(17) 

The use of the Nernst-Planck equation is limited to situations where one can 
neglect the influence of the movement of one ion on the other. This effect 
plays an important role for transport in an electric field, which is clearly 
indicated by the marked dependence of the molar conductance on concen- 
tration. 

To take account of this, transport equations derived from the Stephan- 
Maxwell equations can be used [7]. These equations connect the driving 
forces on the ions with three friction coefficients, K+,,, K-, O and K+,_, and 
the velocities v+, u- and uO, where “0” signifies the solvent. The forces, in 
their turn, are given by the negative gradients in the electrochemical poten- 
tial fi : 

dF+ 
- - = K,, Ju+ - u,) + K+, -(u+ - u-1 

dz 
(18) 

d/X -- 
da 

=K_,.(u--u,)+K+,-(u--u+) 

To arrive at simple expressions, some simplifications are used. First, the 
solvent is used as reference frame for the fluxes and currents. This gives 
u+ - uo = j+/cl, u- - u,, = j-/cl and u+ - u- = il/Fcl. 

Second, we assume that the concentration of the solvent is constant, 
independent of cl. Then K+,. and K-,. are concentration independent and 
can be connected with the Nernst-Planck diffusion coefficients through 
K. = RT/Dj. However, the cross coefficient K+,_ is very concentration 
d&lndent, approaching zero at infinite dilution. 

Finally, we shall use concentrations in the expression for dfi = RTdlnc + 
zFd$, neglecting the gradient in activity coefficients. After some elimina- 
tions and rearrangements we get: 

2D+D_ dcl D+ 4 
j+=- D++D- dz ~ + D++D- F 

which is equivalent to eqn. (16). Thus, this form includes the interaction 
between cation and anion transport. 
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When current is used as an independent variable, a relation for the 
potential as a function of cl and ii is needed. We get: 

d@ -- = - 
dz 

$ (n+ -n_) ?!!$ - _!!_ 
4 

(19) 

where A is the molar conductance at the concentration cl. 

Time dependence of the electrolyte concentration 

The development of the concentration in the pores during discharge 
can be found from the mass conservation relation. The simple form &/at = 
-aj/& can be used if the diffusing substance does not participate in the 
electrode reaction. This is the case for the anion. Thus by using& from eqn. 
(16b) we get the following relation for the change of cl with time t and posi- 
tion z : 

acl a%, 
-D1- 

n_ ai, 

at - az2 + F aZ (20) 

--air/& is equal to the local discharge current, eqn. (1). In the general case 
this term cannot be found explicitly as a function of t and z. 

As a limiting case, the most favourable discharge condition is a uniform 
reaction distribution through the entire electrode. dii/dz is then constant 
and eqn. (20) can be solved. For this purpose we shall not use the discrete 
geometrical model shown in Fig. 1, but a modification of the “macro- 
homogeneous” one-dimensional model proposed by Newman and Tobias 
[ES]. In this model the electrode is treated as a continuum with concentra- 
tions, c’, and transfer current, it, calculated on the basis of unit electrode 
volume. Current and flux densities are measured per unit electrode cross- 
sectional-area. The electrode structure is defined by an overall porosity, p, 
and a tortuosity factor, 0. The concentrations are c; =pq and the effective 
diffusion coefficient, 0; = D1/02 [9]. The z axis does not follow the tortuous 
path of the pores, but is perpendicular to the electrode surface. The origin 
is placed at this surface and discharge current is counted positive. The 
current collector is then positioned at z = I, where I is the electrode thick- 
ness. 

If the discharge current density of the electrode surface is i”, eqn. (20) 
gives, for a uniform reaction distribution: 

ad a26 - =Dia,z -n--$ 
at 

(21) 

If we assume that the concentration outside the electrode surface is constant, 
c?, the boundary conditions are: 

2=0 C’ = pcy 

z=l dc’/dz = 0 
(22) 
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The solution can be derived from the corresponding heat conduction 
problem [lo]. This solution contains, as with eqn. (lo), an infinite sum of 
negative exponentials of the form: 

[exp-((n+ VW2W111b+ Wb13 tZ= 0 cm , *-*, 
~1 is the time constant for electrolyte diffusion in the electrode: 

I2 
71 = --y 

Dl 
(23) 

For t > ~1 the exponentials vanish and the solution degenerates to the station- 
ary profile found for &/at = 0. This approximation is valid in most cases: 
e.g., for a 0.5 mm electrode with 0; = 10F6 cm2 s-’ r1 is 0.7 h, i.e., consider- 
ably shorter than is required by most discharge schemes. The stationary 
solution is: 

(24) 

To utilize the entire electrode, electrolyte depletion must be avoided. Con- 
sequently, we must require c’ > 0 for z = 1. This gives an upper limit for I: 

I< 
2FD&p 

n-iV2 

For a given discharge rate specified as r n, i” depends on the amount of inser- 
tion compound, i.e., on 1 and 1 - p, and Dl/n- is 20,. This gives: 

l2 < JD+cloP 

eZc,“(l - p) rD 
(26) 

Equation (26) provides the possibility of evaluating the interplay between 
the design parameters: I, p and 4, and the discharge rate. Note, in particular, 
the large influence of the electrode thickness on the maximum allowable 
discharge rate. 

For the insertion compound the load factor r&-n was instructive to use. 
We may also consider a load factor, I.+ for the electrolyte network, defined 
as T~/TD. To avoid electrolyte depletion we require 

Ll < 
WP 

n-$(1 - p) 
(27) 

The fraction flp/(cz(l -p)) is the ratio between the charges in the two net- 
works. As ct is much larger (e.g., 25 mol dmm3) than cp, the limit for LI is 
small, of the order of 0.1 - 0.2. This sets rather strict limits on the electrode 
thickness or the discharge rate. 

A uniform reaction distribution, as assumed in the discussion above, is 
never obtained in a porous insertion electrode. However, it is likely that the 
relations (25) - (27) give good practical guidelines for the design of electrodes, 



which are not limited by electrolyte depletion. This may be important where 
porous electrodes are used for evaluating new insertion materials. 

Modelling of the porous electrode 

In the preceding sections the insertion compound and the electrolyte 
networks which together constitute the porous electrode, were discussed 
separately. Limiting cases where one of these networks limits the electrode 
performance, and where simple mathematical expressions are available, were 
investigated. Probably none of these cases is optimal for the design of an 
electrode for a real battery. 

The transport in the electrolyte is coupled to the transfer process and 
the transport in the insertion compound in two ways. One of these was 
expressed in eqn. (l), which states that the local discharge current is given by the 
gradient of the current in the electrolyte. The other coupling originates from 
the dependence of the potential in the electrolyte, 4, on the local electrode 
potential, E = r - qb. T is the Fermi potential in the insertion compound. If 
the electronic conductivity is high, 71 has a constant value everywhere in the 
electrode. However, E varies with position in the electrode due to different 
degrees of insertion. This variation is for constant ?T transferred to the 
electrolyte potential: 

d@(z, t) = -dE(z, t) (28) 

In this way E will influence the current and fluxes in the electrolyte. For 
a battery, the discharge potential E* is measured between the positive 
current collector and the negative electrode. In the present context we shall 
measure the discharge potential between the current collector and a reference 
electrode placed close to the outer surface of the electrode (z = 0). This 
potential can be found as: 

E* = ri - TRef = (71 - @)o - (r - @)Ref - (To - 7h) 

where the subscripts signify the z-coordinate. 

(29) 

For a high electronic conductivity 7c, - x1 can be neglected, and the 
electrode potential is consequently given by X* and C$ at the outer surface. 
If necessary the term rIT, - 7r1 can be found by integrating (i” - ii)/~~. 

In order to calculate the discharge behaviour it is necessary to find X, 
cl, C$ and ii as functions of time and position. This can be done by numerical 
solution of the set of coupled differential equations describing the transports 
in the porous electrode system. Transport in the insertion material is 
governed by eqn. (8) with the boundary condition, eqn. (7). i, is found using 
eqn. (l), which for the porous system gives: 

r 
i, = - 

dii 

s(l-p) z 
(30) 
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as the volume of insertion compound per unit electrode volume is 1 - p and 
the area to volume ratio is s/r. 

Transport in the electrolyte pores is described by eqn. (20) and the 
local @ potential by eqn. (19). The coupling between the electrolyte and the 
insertion compound is then effected by combining an E/X relation, such as 
eqn. (15) with eqn. (28). 

The boundary conditions for the whole system are given by the dis- 
charge mode and the concentration at the surface of the electrode. A con- 
venient way to solve the system is a finite difference scheme as described by 
Brumleve and Buck [ 111. 

Simulation of a TiSz porous electrode 

Similar methods to those discussed above were used for simulating the 
discharge behaviour of a typical porous Li insertion electrode [12]. The 
TiSz electrode with an LiClOJPC electrolyte was used as an approximation 
to an ideal model electrode. The discharge mode investigated was constant 
current and the surface concentration of LiC104 was assumed constant. 
Other data used are listed in Table 1. The geometry factor 2 was chosen 
because for TiS2 there is no L&transport in the direction of the c-axis. 

The simulated discharge curve and, for comparison, the equilibrium 
e.m.f., are shown in Fig. 4. We note the depression of the working potential 
and, at the end of discharge, a coulombic materials utilization of 80%. 

The behaviour of the electrode during discharge is analyzed in detail in 
Fig. 5, where the distributions of Q/C?, X* and i, (in dimensionless units) are 
depicted for the times indicated in Fig. 4 (10, 50 and 80% utilization). 

The controlling factor in this case is quite obviously the electrolyte salt 
distribution. At 50% utilization, the inner 20% of the electrode is already 
depleted of electrolyte, whereas the degree of discharge and the reaction 

TABLE 1 

Design data 
Electrode thickness (I) 
Particle radius (r) 
Porosity (p) 
Tortuosity (6) (assumed) 
Stoichiometric discharge time (7~) 
Current density (i”) 
Initial electrolyte concentration (cl) 

Materials data 
Saturation concentration of insertion compounds (cz) 
Solid state diffusion coefficient ( DS) 
Geometry factor (cylindrical) 
Salt diffusion coefficient (Q) 
Cation diffusion coefficient (D+) 
Anion transport number (n-) 

0.5 mm 
0.5 pm 
0.35 
1 
4.2 h 
5 mA cme2 
1 mol dmp3 

25 mol dmv3 
10-lo cm2 s-r 
2 
2.6 X 10e6 cm2 s-l 
1.6 X low6 cm2 s-l 
0.8 
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75 L w 

Fig. 4. Simulated constant current discharge curve for a TiSz porous electrode with data 
given in Table 1. For comparison e.m.f. equilibrium curve. 

Fig. 5. Distribution of electrolyte concentration c, surface value of X and transfer current 
IY (with sign reversed) in dimensionless units. The three sets of curves correspond to the 
discharge times (degree of discharge 10, 50 and 80%) indicated in Fig. 4. 

current are reasonably well distributed. As the electrolyte depletion extends 
further, the outer parts of the electrode become completely discharged. The 
region where discharge can take place is thus squeezed between the 
electrolyte-depleted and the exhausted parts, resulting in the pronounced 
peak in the reaction current distribution. 

The load factor for the electrolyte network is 0.064, whereas the limit 
according to eqn. (27) is 0.054. Thus, this simple consideration warns that 
electrolyte depletion might occur. 

It is instructive to investigate how the electrode thickness and the 
porosity influence the discharge. Simulations were performed for a number 
of electrode thicknesses and porosities using a higher current (rn = 2 h) [13]. 
The results are shown in Fig. 6. 

The large influence of these design parameters is remarkable and must 
be considered when designing practical batteries. The results reported above 
are typical for electrodes where the electrolyte transport is limiting. How- 
ever, if the particle size is large, or the diffusion coefficient in the insertion 
compound very small, the transport in the solid phase may become limiting. 

To rationalize the relations between the utilization and the discharge 
rate one can use the two load factors L, and L1. To make the results as 
general as possible it is an advantage to include the electrolyte concentration 
and the porosity in L1. The new load factor LT defined as the ratio between 
the time constant and the “discharge time” for the electrolyte: Zpc~Fli”: 

(31) 
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Fig. 6. Simulated discharge curves for a TiSz electrode with (a) different electrode thick- 
ness, p = 0.4, and (b) different porosities, I = 0.4 mm. rD = 2 h, all other data as in Table 1. 

Fig. 7. Load diagram for porous electrode with liquid electrolyte. “Iso utilization” con- 
tours for 30, 50 and 10% maximum utilizations. L, = r&D. Lf = 71(1- p)&/~Dpc~. 
Geometry factor s = 2. Anion transport number 0.8. 

Performing a number of simulations with L, and LT as variables the utilization 
was found and depicted as “iso utilization” contours in Fig. 7. It is obvious 
from the contours that, for small values of one load factor, the other controls 
the discharge. There is a transition region where solid state as well as 
electrolyte diffusion limits the discharge. In this region also, the electrode 
thickness and the particle size are as large as allowed by the discharge load 
and the requirement for a high utilization. 

It is inherent in the mechanism causing electrolyte depletion that the 
anions leave the electrode pores. The mobility of the anions determines how 
fast this happens. The significance of this effect was investigated by perform- 
ing simulations with the cation diffusion coefficient held at a fixed level, 
and with diminishing values of the anion diffusion coefficient. The results 
for a typical electrolyte-controlled electrode are shown in Fig. 8. 

Di as well as A decrease with D-; however, a striking increase in 
coulombic capacity is obtained for very small values of D_ . The explanation 
is that the time constant for the electrolyte network increases so much that the 
insertion compound is exhausted before the near stationary state has occurred. 

The composite insertion electrode 

The term composite has been coined for an electrode consisting of 
insertion compound particles mixed with solid electrolyte particles [14]. 
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Fig. 8. Simulated discharge curves for varying anion diffusion coefficient. Electrode thick- 
ness, 2 = 1 mm; TD= 10 h; D+ = 1.6 X 10e6 cm2 s-l. (a) D_ = 6.45 X lo@ cm2 s-l (n_ = 
0.8); (b) D- = 1.8 X lo-’ cm2 s-l (n- = 0.1); (c) D- = 1.6 X lo-* cm2 s-l (n- = 0.01). All 
other data as in Table 1. 

Fig. 9. Two dimensional composite electrode concept. 

The concept is illustrated in Fig. 9. The point is that true, solid ion conduc- 
tors - excluding polymeric ion conductors - only show conductivity for 
one ionic species. When this is the inserted cation, the solid conductor can 
serve as electrolyte in the insertion electrode. As the “anions” - the com- 
pensating charges - are not mobile, electrolyte depletion cannot occur. 

In this case, since dc/dz, dc/dt and Di are zero, most of the relations 
used in the preceding sections are not applicable. What remains are the basic 
relations: 

di’ 
it=--- 

dz 
(1) 

and in case the conductivity in the insertion compound network is large 
(dn = 0) 

d$ = -dE (28) 

and for the working potential 

E* = -&face - Elei 

The transport relations for the electrolyte are reduced to: 

(29) 

d4 i’ = -q-- 

dz 
(32) 

Using the macrohomogeneous model [8] ~~ is the effective ionic conductivity 
of the composite structure. Combining these relations we get 

d2E 
it = -kzl __ 

dz2 (33) 

it is the boundary condition for calculating the transport into the insertion 
compound using eqns. (7) and (8). Using the potential relation, eqn. (15), 
with ci” included in E”, the system can be solved numerically. 
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It is, however, possible to make some reasonable linearizations which 
allow an analytical solution. We assume that the insertion compound particles 
are so small that L, is very small. Then the concentration on the surface of 
the particles will deviate negligibly from the average concentration. In this 
case we have ax/at = iJ(F(1 -p)cf). Considering Fig. 3 it is obvious that 
the E/X relation can be linearized over a considerable range. Therefore we 
substitute eqn. (15) with a linear relation: 

E = E#-- kX (34) 

Using these approximations we get a second order partial differential 
relation for X. 

ax kki a2X -= 
dt F(l-p)c: dz2 

(35) 

As dX = -dE/k = d$/k we get the boundary conditions from eqn. (32) 

dX ‘0 
z = 0 (electrode surface) z = - k 

1 

2 = 2 (current collector) $ = 0 

(36) 

Equations (35) and (36) have the same form as Fick’s 2’ law for unidirec- 
tional diffusion in a bounded domain with constant flux into one boundary. 
The same relations control the diffusion in insertion compound particles. 
The “composite diffusion coefficient”, D,, is k&/F(l - p)cz. In other words, 
subject to the assumptions made in the derivation of eqn. (35), the composite 
electrode behaves as a solid slab of the insertion compound, but with the 
stoichiometric capacity reduced by a factor 1 -p. The transport properties 
are, however, considerably enhanced. Using L&N as electrolyte and k = 
26RT/F volt, the composite diffusion coefficient can be estimated as cc.. lo-’ 
cm2 s-l compared with lo- lo - lo-l2 cm2 s-i for most insertion compounds. 

The solutions of eqns. (35) and (36) follow the same lines as discussed 
for the pure insertion compound, but only the solutions for s = 1 (plane 
geometry) are relevant. The time constant valid for the solution to eqn. (35) 
is 

FZ'(1 -p)c,o 
rc = 

kh 

and the corresponding load factor 

L,= 
FZ2(1 -p)c,” II2 

=- 
TD kK1 kK1 

(37) 

(33) 

where the last form uses the discharge current per unit volume electrode. 
The working potential is E#- kX*, where X* is the value of X at the 
electrode surface. Two approximate solutions can be found for t < r,/3 and 



156 

t> 7,/3 [l .4]. The discharge curve consists of two parts. A square root t 
(or U) part for t < rJ3 (or U < 243): 

(39) 

and a linear part for t > 7,/3: (U > L,/3) 

(40) 

In the linear part, eqn. (40), the discharge potential should follow the 
e.m.f. curve only reduced by kL,/3. Using the specific discharge current I, 
the depression is IZ’/~K~. The utilization, estimated as the coulombic capacity 
until the working voltage decreases suddenly, cannot be estimated from the 
model described above, because the linear potential approximation used is 
invalid for X 12: 1. However, the value of U = U,, for X* = 1 may be used as 
a rough estimate. In relation to the respective load factors this is the same as 
for the pure insertion compound with s = 1, eqn. (13). 

A more detailed description requires that the nonlinear E/X relation, 
eqn. (15), is used, and that the condition of a small value of L, is relaxed. 
The electrode is then treated by numerical simulation using the methods 
discussed for the porous electrode. 

The most interesting case is still the performance if L, is small. Simulated 
discharge curves for different values of L, are shown in Fig. 10 [15]. For 
U > L,/3, indicated by arrows on curves 1 - 3, it can be seen that the curves 
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Fig, 10. Simulated discharge curves for composite electrode with electrolyte control. L, = 
0.025. 0: e.m.f; 1: L, = 0.4; 2: L, = 0.87; 3: L, = 1.21; 4: Lc = 1.73; 5: L, = 2.43; 6: Lc = 
4.04. Arrows at 1, 2 and 3 indicate limit for the linear region. 
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run parallel with the e.m.f. curve, as predicted from eqn. (40), but they do 
not exhibit the sudden voltage decrease caused by the In X/(1 - X) term, 
eqn. (15), which expectedly should occur for potentials below 1.8 V. This is 
even more pronounced for curves 4 - 6 where the square root law, eqn. (39), 
applies. 

The reason is that the electrode.can be discharged further even if the 
insertion compound is saturated in the outer parts of the electrode. The 
inserted ions are still conducted into the interior of the electrode through 
the electrolyte, bypassing the saturated part. This mode of discharge 
continues until the local transfer current density in the still active part of 
the electrode increases so much, that the transport in the insertion com- 
pound particles becomes limiting. The working potential will be low because 
of the voltage loss in the electrolyte network. An approximate calculation 
for this part of the discharge predicts a dependence of (1 - U)“* [ 141. The 
practical importance of this part of the discharge is, however, disputable 
because it occurs at such a low potential. 

Conclusion 

The use of insertion compounds as battery electrodes is limited by the 
requirement that the inserted ion must be distributed in the interior of the 
insertion compound particle. The transport necessary for this is solid state 
diffusion, which is slow compared with the required discharge rates. In the 
porous and composite electrodes the electrolyte takes care of the ionic 
transport into the electrode. In practical batteries, the transport in the 
electrolyte often becomes limiting for the rate capability because of the 
desire to use as thick an electrode as possible. Due to the mobility of the 
anions in liquid electrolytes this limitation may manifest itself as electrolyte 
depletion in the interior of the electrode. This prevents utilization of the 
active mass there. 

The limitation is overcome by using a true solid, (not polymeric) 
electrolyte in the so-called composite electrode. The low room-temperature 
conductivity and poor technological properties of known solid electrolytes 
makes the general use of this possibility difficult. 

The load factors are used to estimate which transport processes limit 
the utilization of the active material. The magnitude of the electrolyte load 
factor indicates whether, or not, electrolyte depletion will occur. If the 
insertion compound or the composite load factor is dominating, they allow 
estimates of the maximum utilization. 

List of symbols 

A+ Inserted alkali metal ion 
b Mobility in insertion compound 
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Cl 

d 
CP 
c’ 
G 

0 
CS 

DS 
D+, D- 
Dl 
0; 
DC 
E 
E" 
E* 
E# 

; 
HA, 
I 

IY 
h ., 
1 

it 

lY 
‘0 
1 

i 
. . 

I+, I- 
K +,o;K-,o 
K+,- 
k 

LS 
Ll 
LT 
L 
I 

n+, n- 
P 
QO 
RT 
r 
S 

t 

u 

u+, u- 

X 

Concentration of electrolyte salt in electrolyte 
ci at interface 
cl at electrode surface 
Concentration of electrolyte salt per unit volume electrode 
Concentration of A in insertion compound 
Saturation value of c, 
Solid state diffusion coefficient 
Ionic diffusion coefficients in electrolyte 
Electrolyte salt diffusion coefficient 
Effective salt diffusion coefficient in electrode 
Apparent diffusion coefficient in composite electrode 
Electrode potential against a reversible Li electrode 
Standard electrode potential 
Discharge potential of porous and composite electrode 
Constant in linearization of eqn. (15) 
Faraday constant 
Interaction parameter in eqn. (5) 
Insertion compound 
Discharge current per unit volume electrode 
Dimensionless transfer current [ 121 
Ionic current density in electrolyte pores 
Ionic current density in composite electrode 
Transfer current 
Transfer current density 
Discharge current density at electrode surface 
Flux density 
Flux density for cations and anions in electrolyte pores 
Friction coefficients between ions and solvent 
Mutual friction coefficient between cation and anion 
Constant in linearization of eqn. (15) 
Load factor for insertion compound particle 
Load factor for electrolyte pores 
Modified electrolyte load factor 
Load factor for composite electrode 
Thickness of porous and composite electrode (from surface to 
current collector) 
Transport numbers 
Volume fraction of electrolyte (porosity) 
Charge per unit volume electrode 
Product of gas constant and absolute temperature 
Distance from center to surface of insertion compound particle 
Geometry factor 
Time 
Degree of discharge (t/q,) 
Ionic velocities 
Degree of insertion (c,/c,“) 
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Y Spatial coordinate in insertion compound 
2 Spatial coordinate in porous or composite electrode 

Greek letters 

References 

Small increment 
Galvani potential in electrolyte 
Standard chemical potential 
Chemical potential of inserted ion 
Chemical potential of electrons 
Chemical potential of cation and anion in electrolyte 
Electrochemical potentials iii = pi + F(I 
Ionic conductivity 
Molar conductance 
Fermi potential in insertion compound 
Tortuosity 
Time constant for composite electrode 
Stoichiometric discharge time (&,/I) 
Time constant for diffusion in electrolyte pores 
Time constant for diffusion in insertion compound particle 
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